Composing find

Jéssica Mendes ★ Caleb Kendrick

September 18, 2025

DGfS Annual Meeting 2024 * Bochum, Germany

Introduction

Subjective attitude verbs (SAVs) (find-verbs) and vanilla doxastic verbs (think-verbs) differ in at least three ways:

Subjective attitude verbs (SAVs) (find-verbs) and vanilla doxastic verbs (think-verbs) differ in at least three ways:

(1) Acquaintance requirement

a. I find this pizza tasty.

b. I think this pizza is tasty.

 \sim you've tried that pizza

 $\not\sim$ you've tried that pizza

Subjective attitude verbs (SAVs) (*find*-verbs) and vanilla doxastic verbs (*think*-verbs) differ in at least three ways:

- (1) Acquaintance requirement
 - a. I find this pizza tasty.
 - b. I think this pizza is tasty.

- \sim you've tried that pizza

- (2) Selectional restrictions
 - a. #I find John 6-feet-tall.
 - b. I think John is 6-feet-tall.
- (3) a. I find John tall.
 - b. I think John is tall.

Subjective attitude verbs (SAVs) (*find*-verbs) and vanilla doxastic verbs (*think*-verbs) differ in at least three ways:

- (1) Acquaintance requirement
 - a. I find this pizza tasty.
 - b. I think this pizza is tasty.

- \sim you've tried that pizza

- (2) Selectional restrictions
 - a. #I find John 6-feet-tall.

- (3) a. I find John tall.
- b. I think John is 6-feet-tall.

b. I think John is tall.

- (4) Syntax
 - a. John finds [sc this pizza tasty].
 - b. John thinks [CP this pizza is tasty].

	find-verbs	think-verbs
selection	only subjective predicates	no restrictions
acquaintance	don't obviate the AI	obviate the AI
syntax	SC	CP

Table 1: Differences between *find*-verbs and *think*-verbs.

These facts invite two hypotheses:

H1: The meaning of find imposes constraints on the kind of clause it combines with.

These facts invite two hypotheses:

- * H1: The meaning of *find* imposes constraints on the kind of clause it combines with.
- * H2: The meaning of *find* arises (at least partly) in virtue of the kind of clause it combines with.

Our contribution

We will argue for H2 (the meaning of *find* arises in part because of the clause it combines with), based on data from Brazilian Portuguese (BrP).

- * achar + SC = find
- * achar + CP = think / guess / believe

Our contribution

We will argue for H2 (the meaning of *find* arises in part because of the clause it combines with), based on data from Brazilian Portuguese (BrP).

- * achar + SC = find
- * achar + CP = think / guess / believe
- (5) Eu acho [SC essa pizza gostosa], #mas eu nunca provei ela.

 I ACHO this pizza tasty , #but I've never tried it

 'I find this pizza tasty, #but I've never tried it.'
- (6) Eu acho [CP] que essa pizza é gostosa], mas eu nunca provei ela.

 I ACHO that this pizza is tasty , but I've never tried it 'I think this pizza is tasty, but I've never tried it.'

Our contribution

We will argue for H2 (the meaning of *find* arises in part because of the clause it combines with), based on data from Brazilian Portuguese (BrP).

- * achar + SC = find
- * achar + CP = think / guess / believe
- (5) Eu acho [SC essa pizza gostosa], #mas eu nunca provei ela.

 I ACHO this pizza tasty , #but I've never tried it

 'I find this pizza tasty, #but I've never tried it.'
- (6) Eu acho [CP] que essa pizza é gostosa], mas eu nunca provei ela.

 I ACHO that this pizza is tasty , but I've never tried it 'I think this pizza is tasty, but I've never tried it.'
- * Caveat We will focus on the relationship between syntax and the acquaintance requirement, staying (mostly) neutral on how the selectional restriction of *find*-verbs should be encoded.

Roadmap

- 1. Introduction
- 2. Background
 - 2.1 The Acquaintance Inference (AI)
 - 2.2 The syntax of find-verbs
- 3. BrP Data
- 4. Proposal
 - 4.1 The bigger picture
 - 4.2 Compositional fragments
 - 4.3 Deriving AI via transparency plus lexical semantics
 - 4.4 Negation: A potential worry
 - 4.5 Preventing overgeneration
- 5. Conclusion
 - 5.1 Summary
 - 5.2 To-do list

Background

Predicates of Personal Taste (PPTs), like *tasty* and *fun*, imply first-hand experience of the right kind.

(7) This pizza is tasty.

 \sim the speaker has tried that pizza

Predicates of Personal Taste (PPTs), like *tasty* and *fun*, imply first-hand experience of the right kind.

(7) This pizza is tasty.

 \sim the speaker has tried that pizza

In some ways, the AI behaves like a presupposition: it's not cancellable, and it 'projects' through negation:

Predicates of Personal Taste (PPTs), like *tasty* and *fun*, imply first-hand experience of the right kind.

(7) This pizza is tasty. \sim the speaker has tried that pizza

In some ways, the AI behaves like a presupposition: it's not cancellable, and it 'projects' through negation:

- (8) a. This pizza is tasty, #too bad I've never tried it. John might be smoking again, #but actually, he had never smoked before.
 - b. This pizza is **not** tasty. \sim the speaker has tried that pizza It is not true that John is smoking again. \sim John smoked before

Predicates of Personal Taste (PPTs), like *tasty* and *fun*, imply first-hand experience of the right kind.

(9) This pizza is tasty.

 \sim the speaker has tried that pizza

Predicates of Personal Taste (PPTs), like *tasty* and *fun*, imply first-hand experience of the right kind.

(9) This pizza is tasty.

 \sim the speaker has tried that pizza

In other ways, the AI does **not** behave like a presupposition: it does not 'project' through modals, opaque attitude verbs, and questions:

Predicates of Personal Taste (PPTs), like *tasty* and *fun*, imply first-hand experience of the right kind.

(9) This pizza is tasty.

 \sim the speaker has tried that pizza

In other ways, the AI does **not** behave like a presupposition: it does not 'project' through modals, opaque attitude verbs, and questions:

- (10) a. This pizza **might** be tasty.
 - b. John **might** be smoking again.

- $\not\sim$ the speaker tried the pizza
 - \sim John smoked before

- (11) a. I **believe** the pizza is tasty
 - b. I believe John is smoking again.

- $\not\sim$ the speaker tried the pizza
 - → John smoked before

- (12) a. Is this pizza tasty?
 - b. Is John smoking again?

- - \sim John smoked before

So far, we've talked about the compositional differences between *find*-verbs and other doxastics in terms of the SC vs. CP distinction. But there are languages in which a *find*-verb may combine with a CP, and languages in which it must:

So far, we've talked about the compositional differences between *find*-verbs and other doxastics in terms of the SC vs. CP distinction. But there are languages in which a *find*-verb may combine with a CP, and languages in which it must:

(13) %I find [CP that this pizza is tasty].

So far, we've talked about the compositional differences between *find*-verbs and other doxastics in terms of the SC vs. CP distinction. But there are languages in which a *find*-verb may combine with a CP, and languages in which it must:

```
(13) % I find [CP that this pizza is tasty].
```

(14) Magda synes [CP at kjempesequoiatre er et elegant tre].

Magda finds that giant sequoia is INDF elegant tree

'Magda finds that the giant sequoia is an elegant tree.'

Norwegian [=(2) in (Anand and Korotkova, 2018)]

So far, we've talked about the compositional differences between *find*-verbs and other doxastics in terms of the SC vs. CP distinction. But there are languages in which a *find*-verb may combine with a CP, and languages in which it must:

- (13) % I find [CP that this pizza is tasty].
- (14) Magda synes [CP at kjempesequoiatre er et elegant tre].

 Magda finds that giant sequoia is INDF elegant tree

 'Magda finds that the giant sequoia is an elegant tree.'

Norwegian [=(2) in (Anand and Korotkova, 2018)]

CP-embedding *find* behaves the same way as SC-embedding *find* with respect to selectional restrictions and acquaintance.

Importantly, in *find*+CP languages, the CPs that combine with *find*-verbs are transparent:

Importantly, in *find*+CP languages, the CPs that combine with *find*-verbs are transparent:

- (15) Context: Sven mistakenly believes Maria is a lawyer, but she's a judge.
 - a. #Sven tycker [CP att Maria är en fantastisk advokat].

 #Sven finds that Maria is INDF excellent lawyer

 #'Sven finds that Maria is an excellent lawyer.'

Swedish [=(4) in (Korotkova and Anand, 2022)]

Importantly, in *find*+CP languages, the CPs that combine with *find*-verbs are transparent:

- (15) Context: Sven mistakenly believes Maria is a lawyer, but she's a judge.
 - a. #Sven tycker [CP att Maria är en fantastisk advokat].

 #Sven finds that Maria is INDF excellent lawyer

 #'Sven finds that Maria is an excellent lawyer.'

Swedish [=(4) in (Korotkova and Anand, 2022)]

The correct generalization, then, is that *find*-verbs combine with transparent clauses, and *think*-verbs combine with opaque clauses.

BrP Data

In BrP, when the verb achar combines with a SC, it behaves exactly like find:

In BrP, when the verb *achar* combines with a SC, it behaves exactly like *find*:

* it requires subjective predicates

```
(16) #Eu acho [sc o João vegetariano ].

I ACHO [sc the John vegetarian ]
#'I find John vegetarian.'
```

In BrP, when the verb *achar* combines with a SC, it behaves exactly like *find*:

- * it requires subjective predicates
- (16) #Eu acho [sc o João vegetariano].

 I ACHO [sc the John vegetarian]
 #'I find John vegetarian.'
 - * it does not obviate the Al
- (17) Eu acho [sc essa pizza gostosa], #mas eu nunca provei ela.

 I ACHO [sc this pizza tasty], #but I never tried her

 'I find this pizza tasty, #but I never tried it.'

When achar combines with a CP, it behaves exactly like think:

When achar combines with a CP, it behaves exactly like think:

- * it doesn't place any semantic restrictions on its complement
- (18) Eu acho [CP que o João é vegetariano].

 I ACHO [CP COMP the John is vegetarian]

 'I think John is vegetarian.'

When achar combines with a CP, it behaves exactly like think:

- * it doesn't place any semantic restrictions on its complement
- (18) Eu acho [cp que o João é vegetariano].

 I ACHO [cp сомр the John is vegetarian]

 'I think John is vegetarian.'
 - * it obviates the Al
- (19) Eu acho $[_{CP}$ que essa pizza é gostosa], mas eu nunca provei ela. I ACHO $[_{CP}$ COMP this pizza is tasty], but I never tried her 'I think this pizza is tasty, but I never tried it.'

- * Evidence from gapping suggests that achar is not ambiguous:
 - (20) O João acha matemática divertida e a Maria, que a escola the John ACHAR math fun and the Mary, that the school deles é boa.

 theirs is good

 'John finds Math fun and Mary thinks their school is good.'

Judgements were confirmed by 5 native speakers of BrP.

	achar+SC	achar+CP
selection acquaintance	only subjective predicates don't obviate the Al	no restrictions obviate the AI

Table 2: Differences between and *achar+SC* and *achar+CP*.

	achar+SC	achar+CP
selection acquaintance	only subjective predicates don't obviate the AI	no restrictions obviate the AI

Table 2: Differences between and *achar*+SC and *achar*+CP.

These facts cast doubt on the idea that *find*-verbs lexically-encode a requirement for transparent complements, after all, *achar* is flexible between a *find*-and a *think*-meaning.

Proposal

We believe the *think-find* pattern is part of the bigger picture of meaning alternations that arise from differences in argument structure.

(21) a. I ACHO [sc the pizza tasty].

 \sim I've tasted the pizza

b. I ACHO [$_{CP}$ that the pizza is tasty].

 $\not\sim$ I've tasted the pizza

We believe the *think-find* pattern is part of the bigger picture of meaning alternations that arise from differences in argument structure.

(21) a. I ACHO [sc the pizza tasty].

 \sim I've tasted the pizza

b. I ACHO [$_{CP}$ that the pizza is tasty].

 $\not\sim$ I've tasted the pizza

(22) a. John saw [sc Mary leave].

→ John saw Mary leaving

b. John saw [$_{CP}$ that Mary left].

We believe the *think-find* pattern is part of the bigger picture of meaning alternations that arise from differences in argument structure.

(21) a. I ACHO [sc the pizza tasty].

 \sim I've tasted the pizza

b. I ACHO [$_{CP}$ that the pizza is tasty].

 $\not\sim$ I've tasted the pizza

(22) a. John saw [sc Mary leave].

→ John saw Mary leaving

b. John saw [CP that Mary left].

- (23) a. John explained [DP the fact that Mary left].

explanandum explanans

b. John explained [cp that Mary left].

We believe this pattern is part of the bigger picture of meaning alternations that arise from argument structure.

- (24) a. I $_{\text{acho}}$ [sc the pizza tasty].
 - b. I ACHO [$_{CP}$ that the pizza is tasty].

- \sim I've tasted the pizza
- √ I've tasted the pizza

We believe this pattern is part of the bigger picture of meaning alternations that arise from argument structure.

(24) a. I асно [sc the pizza tasty].

 \sim I've tasted the pizza

b. I ACHO [$_{CP}$ that the pizza is tasty].

(25) Factivity alternation in Turkish

[=(1a-b) in (Özyıldız, 2017)]

- a. Tunç [NMZ Hillary'nin kazan-dığın-1] biliyor.
 - Tunç Hillary win-NMZ-ACC knows

'Tunç knows that Hillary won.'

- b. Tunç [cp Hillary'nin kazan-dı diye] biliyor.
 - Tunç Hillary win-pst diye knows

'Tunç believes that Hillary won.'

The plan

To assume a single lexical entry for *achar*, and derive its different readings from how it composes with SCs and CPs.

- * There are a few proposals to derive meaning alternations with opaque CPs and nominalizations/transparent CPs (Bondarenko, 2020, 2022, 2023; Özyıldız, 2017, a.o.).
- * For concreteness, we'll adopt Bondarenko's (2022) proposal.

The plan

To assume a single lexical entry for *achar*, and derive its different readings from how it composes with SCs and CPs.

- * There are a few proposals to derive meaning alternations with opaque CPs and nominalizations/transparent CPs (Bondarenko, 2020, 2022, 2023; Özyıldız, 2017, a.o.).
- * For concreteness, we'll adopt Bondarenko's (2022) proposal.

Step 1 We assume a simplified entry for *tasty*: *tasty* simply denotes a predicate of situations that count as *tasty* in a certain context.

(26)
$$[[tasty]]^{s,g,c} = \lambda s'.s' \sqsubseteq s.tasty_c(s')$$

* This is fully compatible with a more sophisticated semantics for gradable adjectives.

Step 1 We assume a simplified entry for *tasty*: *tasty* simply denotes a predicate of situations that count as *tasty* in a certain context.

(26)
$$[[tasty]]^{s,g,c} = \lambda s'.s' \sqsubseteq s.tasty_c(s')$$

* This is fully compatible with a more sophisticated semantics for gradable adjectives.

Step 2 We also assume achar and SCs are predicates of situations:

- (27) $[\![achar]\!]^{s,g,c} = \lambda s'.s' \sqsubseteq s \wedge think(s')$
- (28) $[[s_c \text{ the pizza tasty}]]^{s,g,c} = \lambda s'.s' \sqsubseteq s \wedge \textbf{tasty}_c(s') \wedge \textbf{holder}(s') = \text{the pizza}$

We propose *achar* takes SCs as an argument. It's well-known that verbs can impose restrictions on the kinds of arguments they combine with.

In the neo-Davidsonian approach we assume, we encode this as a presupposition on the argument-introducing head Θ_{th} :

(29)
$$\llbracket \Theta_{th} \rrbracket^{s,g,c} = \lambda p_{st}.\lambda s_s.\lambda s_s' : s \text{ is subjective } .p(s') \land \mathsf{THEME}(s') = s$$

Because SCs are of type $\langle s, t \rangle$, and the second argument of Θ_{th} is of type s, the SC must QR and leave a trace of type s to solve a type mismatch. That yields the (simplified) LF in (30), and the truth conditions in (31):

Because SCs are of type $\langle s, t \rangle$, and the second argument of Θ_{th} is of type s, the SC must QR and leave a trace of type s to solve a type mismatch. That yields the (simplified) LF in (30), and the truth conditions in (31):

- (30) [[sc the pizza tasty] $\lambda_1 \exists$ [John [Θ_{th} ACHA] t_1]]]
- (31) $[(30)]^{s,g,c} = 1$ iff $[\exists s''[s''] \text{ is subjective } .s'' \sqsubseteq s \land \mathbf{tasty}_c(s'') \land \mathbf{holder}(s'') = \mathbf{the \ pizza} \land \exists s'[s' \sqsubseteq s \land \mathbf{think}(s') \land \mathbf{holder}(s') = \mathbf{John} \land \mathbf{theme}(s') = s'']]$

Informally: there is a situation s'' of the pizza being tasty, and a situation s' of John thinking, and that the theme of s' is s''.

Combining our account with the theory of *that*-clauses from Kratzer (2006), we get a straightforward explanation of why *achar* obviates the Al when it embeds a CP.

(32) a.
$$[[that]]^{s,g,c} = \lambda s'.\lambda p.cont(s') = p$$

b. $\exists s[thinking(John, s) \land cont(s) = [[the pizza is tasty]]]$

Informally: there's a situation *s* of John thinking such that *s*'s content is the proposition that the pizza is tasty.

Combining our account with the theory of *that*-clauses from Kratzer (2006), we get a straightforward explanation of why *achar* obviates the Al when it embeds a CP.

(32) a.
$$[[that]]^{s,g,c} = \lambda s'.\lambda p.cont(s') = p$$

b. $\exists s[thinking(John, s) \land cont(s) = [[the pizza is tasty]]]$

Informally: there's a situation *s* of John thinking such that *s*'s content is the proposition that the pizza is tasty.

Given the following plausible constraint on PPTs, we can show that the transparency of *achar*+SC ensures they do not obviate the Al.

Acquaintance Principle (AP). A situation s makes true (or false) that an object o is tasty to j only if s is a situation of j tasting o.

Given the following plausible constraint on PPTs, we can show that the transparency of *achar*+SC ensures they do not obviate the Al.

Acquaintance Principle (AP). A situation s makes true (or false) that an object o is tasty to j only if s is a situation of j tasting o.

Instead of viewing the AP as an epistemic constraint like Ninan (2014), we view it as an ontological constraint on the naïve metaphysics of speakers.

Given the following plausible constraint on PPTs, we can show that the transparency of *achar*+SC ensures they do not obviate the Al.

Acquaintance Principle (AP). A situation s makes true (or false) that an object o is tasty to j only if s is a situation of j tasting o.

Instead of viewing the AP as an epistemic constraint like Ninan (2014), we view it as an ontological constraint on the naïve metaphysics of speakers.

S finds o tasty \models o is tasty (to S) \models _{AP} S tried o

Given the following plausible constraint on PPTs, we can show that the transparency of *achar*+SC ensures they do not obviate the Al.

Acquaintance Principle (AP). A situation s makes true (or false) that an object o is tasty to j only if s is a situation of j tasting o.

Given the following plausible constraint on PPTs, we can show that the transparency of *achar*+SC ensures they do not obviate the Al.

Acquaintance Principle (AP). A situation s makes true (or false) that an object o is tasty to j only if s is a situation of j tasting o.

Notice that in our current approach the fact that *think* obviates the AI arises as a by-product of referential opacity.

S thinks o tasty $\not\models o$ is tasty (to S) $\models_{AP} S$ tried o

Recap

- * We gave *achar* a single lexical entry deriving its vanilla doxastic and subjective doxastic meanings from how it composes with CPs and SCs.
- * We showed that the differential ability for AI obviation between *achar*+SC and *achar*+CP can be reduced to a difference in referential opacity.

Many theorists have found an entailment view of the AI unattractive because of the negation data.

(33) John found the pizza not tasty.

 \sim John has tried the pizza

Many theorists have found an entailment view of the AI unattractive because of the negation data.

(33) John found the pizza not tasty. \sim John has tried the pizza

In this this section, we sketch an account of this data drawing on work by Bernard and Champollion (2018) who have proposed a non-Boolean semantics of negation to solve several puzzles involving negative perceptual and causal reports

The intuitive truth-conditions for (34) are hard to obtain.

(34) John saw Mary not leave. Higginbotham (1983) ⇒ John saw Mary stay.

The intuitive truth-conditions for (34) are hard to obtain.

(34) John saw Mary not leave. Higginbotham (1983)⇒ John saw Mary stay.

The conditions in (35a) are compatible with Mary leaving, but John not seeing, and (35b) is made true by almost every situation.

(35) a. $\neg \exists s.[\text{leave}(s) \land ag(s) = \text{Mary } \land s \in [John saw]]$ b. $\exists s. \neg [\text{leave}(s) \land ag(s) = \text{Mary } \land s \in [John saw]]]$

The intuitive truth-conditions for (34) are hard to obtain.

(34) John saw Mary not leave. Higginbotham (1983)⇒ John saw Mary stay.

The conditions in (35a) are compatible with Mary leaving, but John not seeing, and (35b) is made true by almost every situation.

(35) a.
$$\neg \exists s.[\text{leave}(s) \land ag(s) = \text{Mary } \land s \in [John \ saw]]$$

b. $\exists s. \neg [\text{leave}(s) \land ag(s) = \text{Mary } \land s \in [John \ saw]]$

Bernard and Champollion (2018) treat negation as a function Neg mapping verbal situations P to the falsifiers of P—the situations that preclude P from being true.

Assuming the VP-internal subject hypothesis, Bernard and Champollion arrive at the following LF and truth-conditions:

- (36) a. Mary did not leave.
 - b. $[closure[[DPMary][1[TP(did)[NegPnot[VoicePt_1[ag' leave]]]]]]]]$
 - c. $\exists s.actual(s) \land s \in Neg(\lambda s'.ag(s') = Mary \land leave(s'))$

This ensures the actual situation is one where Mary stays.

Assuming the VP-internal subject hypothesis, Bernard and Champollion arrive at the following LF and truth-conditions:

- (36) a. Mary did not leave.
 - b. $[closure[[_{DP}Mary][1[_{TP}(did)[_{NegP}not[_{VoiceP}t_1[ag' leave]]]]]]]$
 - c. $\exists s.actual(s) \land s \in Neg(\lambda s'.ag(s') = Mary \land leave(s'))$

This ensures the actual situation is one where Mary stays.

We can utilize the same technology to explain why the AI 'projects' over negation.

Since we are assuming *achar* composes with SCs and CPs via different routes, as it is, our account predicts that *achar* should be able to combine with a SC and a CP at once.¹

This prediction is **not** borne out; (37) is gibberish.

(37) *Eu acho essa pizza muito salgada que o João não vai gostar I find this pizza very salty that John not will like this desse restaurante.
restaurant

Intended: 'There is a thinking situation s about a situation s' of the pizza being salty, and the content of s is that John will not like that restaurant.'

¹Many thanks to Wataru Uegaki (p.c.) for bringing this point to our attention.

This too is part of a larger pattern: perception verbs in general cannot combine with a small clause *and* a CP:

- (38) a. *John saw Mary leave that the bathroom was a mess.
 - b. *John heard the door open that Mary was arriving home.
 - c. ...

One potential explanation: situations of perception are not contentful, and hence cannot be modified directly by *that*-clauses.

One potential explanation: situations of perception are not contentful, and hence cannot be modified directly by *that*-clauses.

In cases like (39a) and (39b), the CPs are actually modifying covert nouns, which are themselves predicates of contentful individuals:

- (39) a. John saw that Mary had arrived home.
 - \approx John saw <the evidence> that Mary had arrived home.
 - b. John heard that Mary was angry.
 - \approx John heard <the rumor> that Mary was angry.

Preventing overgeneration

One potential explanation: situations of perception are not contentful, and hence cannot be modified directly by *that*-clauses.

In cases like (39a) and (39b), the CPs are actually modifying covert nouns, which are themselves predicates of contentful individuals:

- (39) a. John saw that Mary had arrived home.
 - \approx John saw <the evidence> that Mary had arrived home.
 - b. John heard that Mary was angry.
 - \approx John heard <the rumor> that Mary was angry.

If this is on the right track, what looks like a ban on the combination of SCs+CPs is actually a ban on the stacking of complements, which is independently expected.

Conclusion

* We have brought new data from BrP to bear on the semantics of subjective attitude verbs.

- * We have brought new data from BrP to bear on the semantics of subjective attitude verbs.
- * We argued that some of the properties of *find*-verbs follow from their argument structure.

- * We have brought new data from BrP to bear on the semantics of subjective attitude verbs.
- * We argued that some of the properties of *find*-verbs follow from their argument structure.
- * Along the way, we defended the viability of an entailment analysis of the Al.

- * We have brought new data from BrP to bear on the semantics of subjective attitude verbs.
- * We argued that some of the properties of *find*-verbs follow from their argument structure.
- * Along the way, we defended the viability of an entailment analysis of the Al.
- * We proposed that the negation problem that arises from this analysis can be solved by treating negation as a function mapping situations to negative situations.

One more wrinkle: find is obligatorily de se.

- (40) a. John finds the cake tasty.
 - b. \approx John finds the cake tasty to John.
 - c. $\not\approx$ John finds the cake tasty to Maria.

Our current theory doesn't rule out (40c).

The best studied case of obligatory *de se* is attitude verbs with infinitival and gerund complements like (41).

(41) John expects PRO to be identified.

The best studied case of obligatory *de se* is attitude verbs with infinitival and gerund complements like (41).

(41) John expects PRO to be identified.

Chierchia (1989) posits that infinitives and gerunds denote properties:

(42) [PRO to be happy] = $\lambda w. \lambda x. \text{happy}(w)(x)$

On this view, *expects* is type $\langle\langle s,et\rangle,et\rangle$; so, in (41), John attributes to himself the property of being happy.

The best studied case of obligatory *de se* is attitude verbs with infinitival and gerund complements like (41).

(41) John expects PRO to be identified.

Chierchia (1989) posits that infinitives and gerunds denote properties:

(42) [PRO to be happy] = $\lambda w. \lambda x. \mathbf{happy}(w)(x)$

On this view, *expects* is type $\langle\langle s,et\rangle,et\rangle$; so, in (41), John attributes to himself the property of being happy.

It's not immediately obvious how to import this standard theory into the current decompositional account.

Thank you!

References

- Anand, P. and N. Korotkova (2018). Acquaintance content and obviation. In *Proceedings of Sinn und Bedeutung*, Volume 22, pp. 55–72.
- Bernard, T. and L. Champollion (2018). Negative events in compositional semantics. In *Semantics and Linguistic Theory*, Volume 28, pp. 512–532.
- Bondarenko, T. (2020). Factivity from pre-existence: Evidence from barguzin buryat. *Glossa: a journal of general linguistics 5*(1).
- Bondarenko, T. (2023). Factivity-alternating attitude verbs in azeri. *Languages 8*(3), 184.
- Bondarenko, T. I. (2022). *Anatomy of an Attitude.* Ph. D. thesis, Massachusetts Institute of Technology.
- Chierchia, G. (1989). Anaphora and attitudes de se. *Semantics and contextual expression 11*, 1–31.
- Higginbotham, J. (1983). The logic of perceptual reports: An extensional alternative to situation semantics. *Journal of Philosophy 80*(February), 100–127.

References

- Korotkova, N. and P. Anand (2022). Refining 'find': Transparency and categorical judgment. Workshop 'Subjectivity in semantic interpretation', NASSLLI.
- Kratzer, A. (2006). Decomposing attitude verbs. *Talk given at the Hebrew University of Jerusalem.*
- Ninan, D. (2014). Taste predicates and the acquaintance inference. In *Semantics and Linguistic Theory*, Volume 24, pp. 290–309.
- Özyıldız, D. (2017). Attitude reports with and without true belief. In *Semantics and Linguistic Theory*, Volume 27, pp. 397–417.